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Passive scalar convection by a prescribed random velocity field is represented in terms 
of integral equations. Primitive perturbation expansions are constructed by iterating 
these integral equation representations as in Kraichnan (1977). First and second itera- 
tions of elemental functions within these expansions are assumed quadratically 
integrable with respect to space and time. That is, they are assumed to belong to the 
space L,. Line-renormalized perturbation expansions are constructed, corresponding 
to these primitive perturbation expansions, which converge almost everywhere. The 
direct-interaction approximation and the Lagrangian-history direct-interaction 
approximation are the simplest truncations of the appropriate line-renormalized 
perturbation expansions. 

1. Introduction 
Kraichnan ( 1977) has presented a systematic construction of Eulerian and 

Lagrangian-history renormalized expansions in turbulence theory. Corresponding 
primitive perturbation expansions are similar to  solutions of the Volterra integral 
equation of the second kind as presented in Tricomi (1957): 

When the kernel K(x,  y) and the function f(x) belong to the class L,, there is one and 
essentially one solution in the same class L,. Functionsnon-zero on only aset of measure 
zero are ignored. This solution is given by 

m 

- H ( x ,  y: 4 = i h Y K u + l ( X ,  y), 
v = o  

and the series converges almost everywhere. The iterated kernels are defined as 

Letting K(x ,  y) = f(y) k(x, y) implies that 
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or in the form of the solution to (l . l) ,  

where 
00 

- w, Y : 4 = r, hYK”+l(2, Y), 

K,+& Y) = - (44 w, 4 K ,  (2 ,  y) dz (v = 192, 3, * .  .). 

v = o  

1: 
This is an expansion off(z) in terms of $(z), a reversion of the expansion in (1.2) which 
converges almost everywhere. 

We construct primitive perturbation expansions as in Kraichnan (1977), and 
analogous to (1.2). Reversion expansions are generated as in (1.3), our modification of 
the work of Kraichnan ( 1977). Convergence properties of the consequent renormalized 
expansions follow from those of the primitive perturbation expansions and their 
reversions. 

2. Eulerian renormalization 
We consider passive scalar dynamics as defined by 

(-&KV2)@(X,t) = - .U(X,t) .V+(X,t) ,  V.U(X,t) = 0 ,  (2.1) 

where K is a constant diffusivity and u(x, t ) ,  a prescribed velocity field whose statistics 
are assumed isotropic and stationary. The Green function corresponding to the scalar 
field @(x, t )  obeys equations 

(2.2) 

(2.3) 

{;-~V2}&,t:x’,t’) = -ui(x,t)-G(x,t:x’,t’) a -  ( t  > t ’ ) ,  axi 

d(x, t : x’, t )  = S(x -x’), 

summing repeated indices i = 1 ,2 ,3 .  This is equivalent to the integral equation 

O(X, t : x’, t’)  = G0(x, t : x’, t ’ )  - (2.4) 

wherethespatialintegralisdefiniteextendingoverthe spatial domain, andGo(x, t :  x‘, t ’ )  
satisfies 

1 a 
d~ d y  Go(x, t : y, S )  u,(Y, S )  - O(y, s : X’ t ‘ )  , s:. s aYk 

{ f - K V ~ )  Go(x, t : x’ t ’ )  = 0. 

Equation (2.4) is very similar to a Volterra integral equation of the second kind, (1 .1) .  
We ensemble-average (2.2), obtaining 

(; - K V ~ )  G(x, t : x’, t ’ )  = - 

where G(x, t : x’, t ’ )  = ( 6(x, t : x’, t ’ )  ). The aim of Eulerian renormalization is to 
represent (ui(x, t )  ( a/azi) d(x, t : x’, t ’ ) )  as an expansion in terms of G(x, t : x’, t ‘ ) ,  and 
thus be able to solve (2.5). 
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The iteration solution of (2.4) has the form 

a 
ax, 

u,(x, t )  - 6(x, t :x’, t ’ )  
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a 
8x4 

= u ~ ( x ,  t )  - G’(x, t : x’, t ‘ )  - 

Defining the ‘iterated kernel’, 

a 
ax, 

u~(x, t )  - G”,x, t : x’, t‘) = 

a 
a X i  

u ~ ( x ,  t )  - G:(x, t : x’, t ’ )  

, (2.7) 

wherej is any of 0, 1, . . . , n - 1, and 

a a 
ax, ax, u,(x, t )  - G ~ ( x ,  t : x’, t ’ )  u,~(x, t )  - G’(x, t : x’, t‘), 

the iteration solution may be written as 

The ensemble average of this is the primitive perturbation expansion, 
8.- m 

(u,(x, t )  - G(x,  t :XI, t’) ) = 
ax, 

We seek upper bounds for the terms of each order of this expansion. Given any 
functions ((2) and ~ ( x )  in the L, space, t he  norm is 

and the Schwartz inequality yields 

(2.10) 

where [a,  b] may be within [0 ,  h]. Assuming G,”(x, t : x’, t’) and u&x, t )  ( a/ax,) Gp(x, t : x’, t ’ )  
are in the space L, where I = 1 , 2  from appendix 1,  then 
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and in the same manner 

(n = 2, 3, 4, ...), 
(F( t )  --F(tf)p,-2 )a (n-2)! t : x’, t‘) < f(x,  t )  h(x’, t ‘ )  

where 

This establishes that the expansion in (2.8) is uniformly convergent almost everywhere. 
As in (1.3), our reversion of the primitive perturbation expansion of (2.9) is by con- 

sidering the iterative solution to (2.4) cast as 

a a A  
axi axi - G’(x, t : x‘, t ’ )  = -G(x, t : x’, t ’ )  

a +I:, ds S ~ Y  (u&, 4 z a ( y ,  s :XI ,  t ‘ )  

It follows that 

(2.1 1)  
a 

-G’(x,t:x’,t’) axi = 

where 6,(x, t : x’, t ’ )  = d(x, t : x’, t ’ )  and 

Upper bounds for terms in the expansion of (2.11) may be obtained by setting 



Line-renormalized expansions in turbulence theory 523 

y(x,t) = ds dy -G2(x,t: y,s) , s s (Li )a 

which imply 

( n =  1 , 2 , 3  ,... ), { A  ( t )  - A (t’))”-l )a (n- 1 )  ! - 82n+l(X, t : x’, t ‘ )  < a(x’, t ‘ )  P(x, t )  

( n = 2 , 3 , 4  ,... ). {A(t)  -A(t‘))”-2 
( n - 2 ) !  

- d2,(x, t : x’, t ’ )  < a(x’, t ‘ )  y(x, t )  

Therefore the expansion converges uniformly almost everywhere. We conclude that 

) 
a 

- ( U i  (x, t )  6(x, t : x‘, t’ ) 

where (2 .11)  has been substituted into (2 .9 )  and terms have been rearranged. This is a 
renormalized perturbation expansion uniformly convergent almost everywhere. 
Neglecting all but the first term is the direct-interaction approximation. 

Returning to (2 .1 )  for the scalar field $(x, t ) ,  we may posit the equivalent integral 
equation 

a 
$(x, t ,  = $o(x, t ,  -!: d s [ d y  Go(x, : Y, s, (‘k(Y, s, 7& $(Y, ( 2 . 1 3 )  

where 

(;-o] $O(x,t) = 0. 

The covariance satisfies 

which is solvable when an alternative expression for (ui(x, t )  (a/axi) $(x, t )  $(X’, t ’ ) )  in 
terms of ($(x, t )  $(x‘, t ’ ) )  is found. 

We proceed from (2 .13)  as in the analysis of (2 .4 ) ,  and establish the expansion, 

W 

$(x, t )  = x ( -  1 ) j  $,q(x, t ) ,  fl(x, t )  = V(x, t ) ,  

a 

j = O  

where 

$% t )  = sf. d+Y G%x, t : Y, 4 ( U d Y ,  4 $ L A Y ,  4) , 

and j is any of 0, 1 ,  ..., n -  1 .  Its reversion is 

W 

$-O(x,t) = I; $j(X,% $&t) = $(x,t), 
i= O  

via the iteration solution to 
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where, analogously, 

Assembling these, it follows that 

which is a renormalized perturbation expansion uniformly convergent almost every. 
where. The direct-interaction approximation is obtained when only the first two term! 
are retained. 

3. Lagrangian renormalization 

description, writing the governing equations as 
We place the dynamics of the passive scalar field in a quasi-Lagrangian mode of 

where, as in Kraichnan (1977), u(x, t J s )  is the generalized velocity, and Y(x, t J s )  the 
generalized passive scalar field. That is, if a material element passes through space-time 
co-ordinates (x, t )  and is observed a t  time s, it  will have velocity u(x, t l s )  and passive 
scalar field value Y(x, t ls) .  Equation (3.1) states that, when labelling time t and measur- 
ing time s are the same, the quasi-Lagrangian picture becomes the Eulerian picture. 
Equation (3.2) is the incompressibility constraint. Equation (3.3) is a kinematic 
constraint on quasi-Lagrangian field variables. In following the flow 

Y(X,tlS) = Y(x+Sx, t+Stls) ,  

which may be Taylor-expanded to 
a Y(x,tJs) 2: Y(X,tlS)+ 6x.VY(x,tls)+ &,Y(x,tls). 

The limit of small St is (3.3).  As in the discussion in $2,  K is a constant diffusivity and 
U(X, t l s )  a prescribed velocity field having isotropic stationary statistics. The correspon- 
ponding Green function satisfies equations 

a (; - K V Z )  B(x, tlt:x‘, t ’ ls ’)  = - u,(x, t J t )  - axi 6(x, t l t  : x’, t ’ ls ’ ) ,  (3.4) 

(3.5) 
a a - G(x,tls:x’,t’ls’) = -ui(x,tlt)- &(x,tls:x’,t’ls’), 
at 8x6 

d(x, t ls  : x’, t l s )  = S(x -x’), 
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Measuring time (s) 

FIGURE 1. Integration path for (3.6). s is always greater than or equal to s’, whereas t 
and t’ are unrestricted. 

which are equivalent to the integral equation, 

Qx, t l s  :x’ ,  t’ls’) = GO(x, tls : x’, t’ls’) 

+ / t y d r S d y ~ ~ ( x , t l s :  y ,r ls’)  - u k ( y , r / r ) a B ( y , r l s ‘  aYk 

+ / ~ , d r S d y ~ ~ x , t l s :  y , + )  -Uk(y,rlr)--(y,rlr:xI,t‘ ls’)  aYk 

-uk(y , r l r ) -  a?/k G(y , r / s :x ’ , t ’ l s ’ )  

:x ‘ , t ’~s ’ )  

a 

+ j ’ ; d r / d y ~ o ( x , t j s :  y , r l s )  a 

(3.6) 
where spatial integrals are definite, extending over the spatial domain, and 

obeys 
G0(x, t l s  : x’ ,  t ’ ls ’ )  

( ; - K V ~ )  Go(x, tlt : x‘, t‘ls’) = 0, 

a 

a 
at -Go@, tlS:X’, t‘ls’) = 0, 

- G ’ ( X , ~ ~ S : X ‘ , ~ ’ / S ‘ )  at’ = 0. 

The path integral for 6 ( x ,  tls : X I ,  t ’ ls ’ )  is as in figure 1. The ensemble average of (3.4) 
and (3.5) is 

a 
[ ; - K V ~ )  G(x, t l t :x ’ ,  t’ls’) = - (u~(x,tlt)~b(x,tlt:~’,t’ls’) 

(3.8) 
a a 
jj G(x, tls : x’, t ’ l ~ ’ )  = - d ( x ,  t ls  : x’, t’ Is’) 
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where G(x, t l s  : X I ,  t’ls’) = (6(x, t ls  :XI, t’ls‘)). We must represent 

as an expansion in terms of G(x, t l s  :x‘, t ’ ls ’)  to solve (3.7) and (3.8). 
The iteration solution to (3.6) is 

m 

j = O  
Q(x, t l s  : x’, ~’Js’) = ( - l)jG;(x, t l s  :x’, t ’ ls ’ ) ,  

dyGq(x,tl8: Y,r l s ’ )uk(Y,r l r ) -G~- l - i (y ,  r/s’:x’,t‘/s’) 

(3.9) 

where the ‘iterated kernel’ is defined as 

a Gi(x,t/s :X’,t’lS’) = 
@k 

a 
-k /:,drSdyG;(x,tls: y,~lr)Uk(y,rlV)- Gz-l-j(y,rlr :X’,t’lS’) 

’Yk 

(3.10) 
G!(x, t l s  : x’, t ’ l ~ ’ )  = G0(x, t l s  : X I ,  ~‘Js’), 

a n d j  may take any of the values 0,  1 , 2 ,  . . . , n - 1. 
Assuming GP(x, tls : x’, t ’ ls ’ )  andui(x, tlt) (a/axi) Ga(x, t l s  : x’, t ‘ ls ’ )  belong to the space 

L,, where 1 = 1,2,  upper bounds are sought for the terms of each order of (3.9). The 
Schwartz inequality implies that, given any functions C(x, y) and ~ ( x ,  y) in the space L,, 

11C112 l lVI l2 ll/”” ax, Y) v k ,  Y) dY I/ 9 (3.11) 

as pointed out in Tricomi (1 957). The interval [a,,, b,] is a subset of the domain of [and 7 
with respect to y. Equation (3.10) and the Schwartz inequality imply 

2 

a0 

:x‘,t‘It‘) 

G fk t )  dx’, t ’ ) ,  

where 

and time integrals are definite, extending over the time domain. The generalization 
that ma,y be induced is 

{F(t)  - P(t’)}n-l 
(n - 1) ! (n = 1,2  ,... ), (3.12) 

a 
Ui(X, tit) ax, Gg,+l(x, tlt :x‘, t ’ l t ’) 

Q f(x, t )  9(x’, t ’ )  

and in the same manner 
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where 

The assumption 
a 

G ~ ( x ,  t ls:  x‘, t ‘ J d )  < N ( I  = 1, 2) 
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When we choose j = n and assume n is even it follows that 

(3.15) 

The analysis of j/ui(x, t l t )  (a/8xi) G$(x, t ( s  :x’, t ’ l ~ ’ ) ( /  and other expressions is similar. 
As a consequence of the factorials in the denominators of, for example (3.15), the 
expansion in (3.9) is pointwise-convergent almost everywhere. Further detail is in 
appendix 2. 

4. Concluding remarks 
The discussion centres on the similarity which exists between the Volterra integral 

equation of the second kind and the integral-equation representations of the passive 
scalar field and the Green function. Primitive perturbation expansions involve itera- 
tion solutions to these integral-equation representations. Corresponding reversion 
expansions involve iteration solutions of these same integral-equation representations 
in rearranged form. Given that elemental functions of the primitive perturbation 
expansions iterated once or twice belong to the L, space, the primitive, reversion and 
line-renormalized perturbation expansions converge almost everywhere. These results 
and the above-mentioned similarity depend on the presence of molecular diffusivity. 

The lowest-order truncation of the renormalized perturbation expansions can be 
associated with the random-coupling model of Kraichnan (1 961). As this is a realizable 
model, the Green function has a physically acceptable behaviour. Approximations 
attained by higher-order truncations may not be useful, because this kind of association 
may not be possible. 

The author is very thankful to E. Lorenz and E. Mollo-Christensen for their encour- 
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National Science Foundation under grant 77 10093 ATM and the National Science 
and Engineering Research Council of Canada under grant A 5201. 
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Appendix 1 
From (2.7) it may be inferred that 

lim G!cc -u(x, t ) .  (x -x’) S(x-x’), 
t 4 ’  

limu.VG,cc -u(x,t).V{u(x,t) .(x-x‘) S(x-x’)}, 
hi?, 

and similarly for G! and u , VGg. Integration by parts leads to square-integrability. 

Appendix 2 
Suppose that functions C(x) and ~ ( x )  are bounded and measurable, as the elemental 

functionsf, g, 9, . . . of (3.15) are assumed to be. Then, for any interval [a, b ] ,  it follows 
that 

The ratio test implies convergence. 

REFERENCES 

KRAICHNAN, R. H. 1961 J .  Math. Phys. 2, 124-148. 
KRAICHNAN, R. H. 1977 J .  Fluid Mech. 83, 349-374. 
TRICOMI, F. G. 1957 Integral Equations. Wiley Interscience. 


